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Abstract

A series of near-stoichiometric Zn:LINB@Zn:NSLN) crystals were grown by the top seed solution growth (TSSG) method usih@¥x
flux. Defect structures and Zhoccupation mechanism were analyzed and discussed by X-ray powder diffraction (XRD), differential thermal
analysis (DTA), ultraviolet-visible (UV) absorption and infrared (IR) spectrum measurement. Moreover, we also found that the threshold
concentration of ZnO in NSLN were between 2 and 3 mol%.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction portance for improving many physical and optical properties
[9].

LiNbO3 (LN) single crystal belongs to trigonal crystal sys- Many investigations have been carried out about the
tem, whose point group is 3 m in room temperature and spacethreshold concentration and defect structure in congruent
group isR3C[1]. For its excellent piezoelectric, electro-optic  LiINbOgz (CLN) crystals doped with M (M = Mg, Zn, In or
and nonlinear optic properties, the crystal is widely use in Sc) in recent yeaf$—8]. But the relation between the dopant
many fields, e.g. transducer, acoustic surface wave deviceand crystal properties is still unclear in near-stoichiometric
holographic memories. It is a well-known fact that all these LiNbO3 (NSLN) crystals doped with M. In this work, we
properties are affected significantly by intrinsic and extrinsic grew a series of NSLN crystals doped with Zn and studied
defects due to the non-stoichiometry, impurities or dopants their structure properties by X-ray powder diffraction, DTA,
[2]. Protons, in the form of OH ions, are always presentin UV absorption and IR spectrum measurement.
air-grown LiNbG; though not intentionally dopg@]. It has
been proved that OHions play an important role in ther-
mal fixation of holograms in LiNb@[4]. In 1980, Zhong 2. Experimental procedure
et al. [5] first reported that many properties exhibit abrupt
changes when MgO dopant content reached a certain value2.1. Specimens preparation
that is, so called “threshold concentration”. Later, this phe-
nomenon was also found in LiNk@rystals doped with Zn, All studied near-stoichiometric specimens had been
In or Sc[6-8]. Moreover, it has been demonstrated that con- grown in air atmosphere from congruent melts containing
trol of non-stoichiometric defects in LiNbwvas of key im- 10.7 mol% KO by the top seed solution growth (TSSG)

method. All raw materials LICOz, NbyOs, KoCOz and ZnO
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1050°C for 2 h to prepare polycrystalline materials through in the 300—900 wavelength range, while the infrared absorp-
the method of solid reaction. The temperature of solid reac- tion spectra of the crystals were measured by Flourier infrared
tion was cooled down for using40 as flux, which avoided  spectrophotometer.

raw materials melted locally. The crystals were grown using
c-axis seed crystal from the polycrystalline materials in anin-
termediate frequency (IF) heater furnace. The crystals were
grown at rotating rate 40 rpm and pulling rate 0.1 mmh

o _ X-ray powder analysis confirmed that all crystals were
and about 10% of the melt was crystallized. The crystals gjngje phases of LN. The lattice constants of crystals were
were annealed to room temperature in air at the speed of

- calculated by the least-squares method and listdadlme 1

40h. . , The unit cell volumes were also given by the formiar
It was found by HF-HN@ (1:2) etching experiments 520y, cos30. The variation of the lattice constants and the
that all as-grown crystals had almost single-domain struc- it cell volume with the ZnO content in melt was shown in
ture, therefore required no poling treatment, which avoided gjq 1 |t was clear that in the near-stoichiometric samples,

introducing cracks or scattering centers into the congruentp i of |attice constants and their ratiata) increased with
crystals. In contrast to most other dopants nearly all potas- 7,5 content increasing, thus the unit cell volume of crystals

sium remains in the melt, which have been confirmed by an ;¢ increased. Froffable 1andFig. 1, we can assume that
electron microprobe experimefi], thus the influence of K 0 ¢rystal structure of NSLN was much closer to that of
on the crystal properties can be_neglgcted. For spectrum. meag| N with ZnO content increasing. lonic radii of Zn ionms
surement;, the cryst.als were sllcgd into wafers perpend!cular: 0.74,&) were much closer to that of Nb iong, = 0.68,&)

to _they—.aX|s and pollshed_ to a mirror surface on both sides a1 that of Li ions i = 0.60,&), therefore Zn ions should
using SiC powders and diamond paste. prefer to replace Nb ions rather than Li ions.

3. Results and discussions

2.2. Measurement

Table 1
. . Lattice constants of congruent and Zn-doped near-stoichiometric crystal
The X-ray powder analysis using a D/maB- style X- samples
ray diffractometer with a revolving anode were performed .~ ;.0 (mol%)  a(nm) c(hm) Ja v (nn)
for phase identification and lattice constants determination.
The Curie temperature of the specimens were measured by 0 051487 138625 269243 031825
) . . . 0 0.51413  1.38170  2.68745  0.31629
DTA technique using ZRY-2P style differential thermal an- ¢, 1 051448 138342 268897  0.31712
alyzer, which were recorded while slowly heating the speci- g2 2 0.51463  1.38397 2.68925  0.31743
mens at a rate of IC min— from room temperature to about ~ S3 3 0.51478  1.38455  2.68960  0.31775

1260 in air. Adopting CARYIE style UV-vis spectropho-  Where “C” denotes congruent sample, and “S” denotes the near-
tometer, the absorption spectra of the crystals were measuredtoichiometric sample.
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Fig. 1. Lattice constants and unit cell volumes as a function of ZnO content in melt accordiaigléol



S. Fang et al. / Materials Chemistry and Physics 89 (2005) 249-252

T T T T T T T
g 1220 - e
5 I
5 1200 / -
© Fow
2 1180 | -
qE> L
; 1160 - —=— CLN| |
g Mo —o— SLN| 1
O 1140 | .
T T T T T T T
0 1 2 3
ZnO(mol%)

Fig. 2. Curie temperature as a function of ZnO content in melt.

In Fig. 2, the Curie temperature for NSLN was plotted as a
function of ZnO content in the melt. In LiNb§Xrystals, the
Curie temperature reflected the Nb concentration of crystal,
which increased with the decrease of Nfanti-site Nb, Nb
in Li site) concentration or the increase of fyb(normal Nb
site)[11]. On the basis of Li vacancy modéR], the formula
of LINbO3 was expressed as [Lis,(VLi)ax(Nbyi),]NbOs3,
where \{; denoted as Li vacancy. In contrast with that of
CLN, the Curie temperature of SLN increased for intrinsic
defect Npj concentration decreasing. Frdfig. 2, the Curie

temperature reached a maximum value when ZnO doped con

centration was between 2 and 3 mol% in near-stoichiometric
samples. At this doping level, all Npions were completely
replaced by Zn ions, and this doping level of ZnO was called
as “threshold concentration”. When ZnO dopant concentra-
tion was lower than “threshold”, Nb ions were gradually
replaced by Znions, thus the Curie temperature will increase;

otherwise, when ZnO dopant concentration was higher than

“threshold”, all Ni; ions were replaced and Zn ions began
to occupied Lj; site (normal Li site) and N, site simul-
taneously, which made Njg ions decreased, so the Curie
temperature will decrease.

We presented the absorption spectra of Zn:NSLN@n 3.
The absorption edge of Zn:NSLN crystals shifted to short-
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Fig. 3. UV absorption spectrum of Zn:NSLN.
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Fig. 4. Band structure of LiINb®

wave direction and the shift extent increased with the ZnO
content increasing. Moreover, in contrast CLN samples, that
of NSLN also exhibited a shift towards shortwave direction
[13]. The basal absorption edge was decided by valence elec-
tron transition energy from valence band to conduction band.
Band structure of LiNb@was shown irFig. 4, in which 2p
orbits of & acted as the top of valence band and 4d orbits
of Nb>* acted as the bottom of conduction band. In CLN
sample, there existed a lot of anti-site defects, i.e.;ffh
which acted as electron traps for positive charge. Therefore,
these defects formed a localized state in the forbidden band

and made forbidden band shallow. In NSLN samples, the for-
bidden band will be widen for anti-site defects, i.e. NB,
decreasing, so the energy for valence electron transition will
increase, which resulted in blue-shift of absorption edge. In
Zn:NSLN, Zn replaced Nb** when Zn concentration was
lower than “threshold”, so Nb** concentration decreased
and Zn;* generated, which will make forbidden band widen,
too, thus absorption edge also exhibited blue-shift; otherwise,
when doping Zn concentration higher than “threshold”, all
Nby;#* were completed replaced and Zn ions began to replace
LiLi and Nhyp simultaneously, thus forming 2 —Znp®~
charge self-compensating structure, which will make forbid-
den band more widen, therefore blue-shift extent of absorp-
tion edge increase further.

The infrared absorption spectra measurement result was
shown inFig. 5. It can be seen frorkig. 5that the OH ab-
sorption peak of samples S0, S1 and S2 located at 3466 cm
and that of S3 sample was at 3528 ¢iywhereas that of CLN
was at 3481 cml. In LiINbOs crystals, H was confirmed to
occupied Li site, which had been reported by Kong et.al.
[14] usingH nuclear magnetic resonance measurement. We
thought that 3466 cm! absorption peak was responsible for
the vibration of OHj ~ for H* locating at \(; in SO sample,

i.e. pure NSLN, whereas that of 3481 chwas caused by the
vibration of OH_; ~ for H* replacing normal Li sites in CLN
sample. In CLN sample, there were more anti-defecis Rib
than that in NSLN, therefore Hwill be repelled to incorpo-
rate to Li site, not ; site, otherwise, Hwill occupy V; site

in NSLN crystals. In NSLN, OR; ~ being repelling inten-
sively by Niy;4*, fewer energy will be required for Qj; ~
vibration than the case in CLN, so absorption peak exhibited
red-shift in comparison with CLN. When Zn dopant con-
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Fig. 5. IR transmittance spectra of Zn:NSLN and CLN.

centration in NSLN was lower than “threshold”, Zn will re-
place Ni; 4* to form Zn;*, there will be not more Hin

the vicinity of V| site for intensive repulsion, so absorption
peak still located at 3466 cm caused by OK; ~ vibra-
tion. Otherwise, when Zn dopant concentration in NSLN was
higher than “threshold”, all Ng** was replaced completely
and Zn began to enter into normal Li and Nb sites, form-
ing Zn_i*—Znww®~ charge self-compensating structure. Thus
ZnLi *=Znyp3—OH~ defect structure formed for Zg3~ had

an intensive attraction for H so more energy was required
for OH™ vibration, which resulted in blue-shift of absorption
peak, to 3528 cmt.

4. Conclusion

Inconclusion, Zn:NSLN crystals were grown by the TSSG

method. Measurement results showed that the threshold con

centration of Zn:NSLN crystal was between 2 and 3 mol%.
UV absorption edge of Zn:NSLN exhibited blue-shift with
the Zn concentration increasing. In Zn:NSLN crystals, OH

S. Fang et al. / Materials Chemistry and Physics 89 (2005) 249-252

peak value located at 3466 ctin the case of Zn concen-
tration lower than threshold concentration, otherwise,"OH
peak shifted to 3528 crt. Based on Li-vacancy model, we
thought Zrt* ions first replaced Nb** ions to form Zn;*
ions, thus began to occupy normal Li and Nb site simultane-
ously and generated Zrf—Zn\p" charge self-compensating
structures.
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